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1. Introduction

While a random effect model has been considered only by Cochran (1964),
a fixed model is usually adopted in the analysis of covariances. As far as the
author is aware, it seems that no one has ever attempted to tackle the problem
of analysis of covariances in mixed models. This paper is therefore devoted
to such a problem with the purpose of developing a test procedure for the
treatment effects in the presence of concomitant variabes in mixed models. In
this paper we treat the problem from the traditional sampling theory approach;
the results from the Bayesian approach will appear latter on somewhere else.

2. Elimination of the Concomitant Variables in Mixed Models
In this paper we consider a mixed model with one concomitant variable
X;; as '
Yi; = ot +a¥+ B+ Xid+e; = pta; b Bi+ 250 + e (2.1)
i =12 ... %7 =12 ...m
where Y;; are the observations; #* is the population mean; «% and § are the
unknown parameters; B; and ¢;; are the random variables;
go=utF XS4+ a; = al —a&%, 2 = Xii— X.. so that Xa;
k]
= sz“‘ = 0.
i J
Or, in matrix notation,

Y

il

Lot +1, ® L+ 1, © i+ 20 + ¢

Il

Toeer+ 1, © Leix + 20 + e (2.2)

where, ¢ = I, ® 1:8 1 ¢,
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I_” = (Y11, Y1z -+« Y1my Yaur Yazo oo o Yams oo o Ykt Ybas -+« Ybsn)
2 = (21, Zagy oo Liny Ta, La2s oo Lans «vo LBy Thay ov v Lhn)
e = (e Ch1, € Chn)

115 €12) o0 €ins €a1, €325 . €2my o v n kly k2 +«« Eby

1y is a p X 1 column vector of 1’s, and © denotes the “Direct Product”.

Using (2.2) we now proceed to illustrate how to eliminate the effect of o
along some princinle of projection. In this paper it will be assumed that
EB=0, Ee = 0, V5 = o3le and V.=0"1,; and that 8 is independent of ¢, and
whence, Ee = 0 and Ve =1, @ 1elho% -+ 1, @ Iho? = o2C.

Putting Ay = 1,, = 1, ® 1, and Ay = 1, ® I, we may then rewrite model
(2.2) as

X = A+ Alﬁ_z + -26'5 + € = Aoy + A1-o(c)g +£-o(c)6 + e

Aot + Avoatt + Zoco )6 + ¢ (2.2)
where, Avoer = A — Ao(Agc—lA&)“lAgC‘lAl,
Teote) = T — Ag(AJC~A0)-1A;C 1,

Avoxr = Aroer — Tt (2200e3C 7 w0ced) 7222000 yC Aragce s
and 0* = 0+ (2l0¢erC ™ u0003) ~ @006 yC T Ao ora
Obviously, AC ALy = 0, AiC e = 0, AilC-'ALx = 0
and A{.OxC—1£.0<c) = 0.
Now,

Cc = {16‘2;1 LI AL P LT = Lo {1, -%293—7651,@1;}
On simplification we obtain then,

Aoty = 1y @ (I = = 1,13),

Loy = o,

Arar = 1% (L = Llg) = 2 (3, 2, .. 24,

13
and 8 = 8+ 3 Fa, (2.4)
w ;=1
k n kd% n
. — 3 __ 2
where, w = ,21 jglx[ > kgg”- i

Making use of the principle of the general Aitkin’s least square method
{see, for example, Tan’s notes Vol IL, chapter XIV, 1967), the LUMYV estimators
of 1, 0* and a in the sampling theory framework can readily be obtained as

A e
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A = (AjCTA,)A[CY = 7

< ko’ S
2 S XijYij — kg_{_ig’g‘k;x-ly-f w!
Sy ” e
— x2.
; 3..1 xz] kd% + 0.2 ]Z J
and & = (A5,,C'ALox + B’B)“IAQ.MC‘“‘X (2.5)
respectively, where B = l/ % 1;
i CAves = (L — L 1,17) — 2 %
Since 1x0 105 = Rilp A Lely) w 2B

’ 1 v Va4 -
(Al.5:C ALz -+ B'B)-* = Y {Ik — %?_Q_&} !

% {Ik + o= O §’-§§;'}

n > I3
w o . -
and AL, CYY = n{ 1) —7{}»—‘§,.}, where X;, = (2., Z;,...22.)
and Y. = (§1.%20 ... Fs.), we have then
& = (AL, C A0 + B’B)‘lAi.OxC_IX
—n Z Ziyi. _
= (Y — 9. 113) - 7‘_72 "Uz - §,. . (2.6)
or
wh —n 2 &
c@,- = (’y,-. — Y.} — T_nzﬁ?— Liye t = 1, 2 e k

The variances of 4 and 6* and the covariance matrix of ¢ are obtained
respectively as:

Var{g) = (A{,C—le)‘1A(’,C—1V1C*1A0(A5C—1Ao)—1

Il

FACT AN = Lo (ko) + ),

Var(8*) = (EIC—I_@“@'C—lVlC‘lﬁ(ﬁ’C‘l_@‘l = o*(2'Clz)1 = -
and
Vi = (AL, C AL + B’B)“IAQ.OxC“IVlC"lAI.ox(Ai.oxC"lAl.Ox + B'B)-?
= Gz(A;_.OxC_IAl-()x + BIB)_1A£.oxC_IA1-0x(Ai-oxc_lAl-Ox -+ B'B)-!

.: {Ik_gk lklk}(Ik'l—ﬁi 77 E_X_)
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_ a 1 T A -
T on {Ik ~ o el w—n3 T, X X

PEN

a singular matrix with rank % — 1.

3. Testing the Hgpothesis Hy; @ = 0

For the purpose of testing H,; @ = 0, we assume that £ and ¢ are normally
distributed so that ¥ ~N{Agz + Awx + 28, V,) = N{Agu + Aoz -+ 26%, 6°C).
Defining now

Qolp) = (ﬂ—ﬂ)(A{)C‘]AO)(ﬁ,—/Jz) = . nko? (.. — )2,

Il

Qs (%)
Qula) = (a— &) (A1,,C ' Avos) (@ — &)

(8% — 6*)(2/C~1m) (6 — 8%) = (8% — §*)2

n S (= @) — SIS B — @)
Qs = ij (7.; —7..)* and

Qo = {32 (W5 —Fn — s + 5.0 —

i J

- - ko' S
(35 s =2 s = 90) = S T B 52058

B )
2 ’
(S5 (@ — 32— 208 sz
i 7 B
it is straightforward to show that

(X — Aop — Al«oxﬁ - xé}*)rc—l(z — Agu — Al-oxﬁ — z6%)
2
= Qe+ g Ut Q)+ Qol3) + Qula))

Hence, the likelihood function of (g, 6% &, o% o}) is

~nx —nlk—~1) -
L(u,ﬁ*,a,dz,dfglg> — (272:) 2(0.2) 2 (O‘z‘f‘kd_zs) 2X
exp { ~[ %+ % + 5 (Qola) + Qa(0%) + Qule)) )

Making use of the Cochan-James theorem (see Tan’s Notes, Vol II, pp 448,
1967), it can be shown that

Q;, WQ%, Qo(#), Q2(0%) and Qu(@) are independent Chi-squares
g og -+ o

with degrees of freedom given by (A—1)n—1) —1, n — 1, 1,1 and £ —1,
respectively.
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e e

1t follows that, under Hy; a = 0,

gd_( 1) f = —1) (36_ =1~ Fr—1 (s—1(n-11—1» While under the negation
of H,,

Sﬁ 1) /(k = j_')é,ze_ =1 ~ F_1 (n-1>in-1» 0% @ noncentral F with

df = (k=1 {k—-Dn-1) —1) and noncentrality parameter

02 = —ZLT{Z aj — l;)— (X i;.a;)z}. Upon simplification we have in fact
—nzx i
Q:(0) = n;(y;.—y.«)z— w—an- — 0 2\ LY
—%Zmz Yi.
—*“[”2%% nz'x.,7~n2 ]
(w, —nzz‘s-ﬂz )2
and Q.(0) +Qs(0) = nZ (G — 70+ Juf__ﬁﬁ 5

2 Q / Qe
f —_ [E— —
Since w' and w are functions of # = 62 , the statistic - -1 F—1)(n L —1) =1

W

g
o

is in general a function of § = —5- Thus in testing the Hypothesis Hy; a =0

we should distinguish two cases:

(a) Casel. If § =

then both Q4(0) and Q. are clear of o}

Qs

and ¢? and further, A+ e~ o2 _,, independent of Q«(0) and Q.. Hence Q,

+ ngﬁfkﬁ’)ﬂ ~ 6% y_1y-1 and the likelihood ratio method yields the critical

region at level 0.05 as

Qe, ,,/

">Fk » s(n—1~1(0.05},

0;

where Fr-1 k(n—l)—1(0.05) is the upper 0.05 point of Fr-1 rtr-v-1-

2
(b) Case 2. If 6 = %52/ is unknown, then # poses as a nuisance parameter
: _ Qo) Qe .
inFe= ;77 FoDn—1) —1" When # is very large, one may however
2
approximate Q.(0) and Q. by substituting for 6 = % by its unbiased estimate

to yield Qq(0, ) and Q.(d). The critical region for Hy; a = 0 can be appro-
ximated by

Co; Qz(_o_’?/(** )(Q;")"" 7= > Fr-1 (h-0n—1-1.(0.05)
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4. Comments on the Testing Procedure given in 3.

In cases in which § = %é, is unknown, the procedure suggested in case 2
of section 3 may invalidate the F test when # is small. This is to be expected
since the substitution of & for 6 introduces further random errors in Q.(0)
and Q.. Therefore in cases in which # is small the efficiency of the procedure
suggested in case 2 of the previous section may be very low. A number of
special cases deserve mention, however.

Case 1. If itis known that ¢} = 0, then Q; is an unbiased estimate of (# — 1)4*

Hence

p, = Qul0ob= )/,Q,e(fffs, 0) -+ Qﬂ

En—1) —1 ~Fr-1 etn-1-1

Qu(0,0% = 0) = »Z2(gs —¥..)" — n2 2y
AT"_( < LijYij < - %14 % (xii —~ &; )(?/u — ¥ ) .
B L ek
2 B ISR e - B — 5P
Qe((fﬂ =0} = {Z;{%(yz] Yi gi 9.0 — ;}}(x” —z.)° }

Thus, the critical region at level 0.05 for Fo; & = 0 is
Co: Fi>Fr-1, tn-1>-1(0.05), where Fr-1, rcn-1-1(0.05) is the upper 0.0b point
of Fe-1 ktn—1-1
ks

Case 2. If ko} > o so that ¢ = .- ~1, then Qq(0) and Q. are well

approximated by

Qalo(b—‘l) ZL( )2_‘* zT (x“__mt__i.])z - %297":?;
7
}.;A_J( iiT 'Z'J)(yzj Y. ) o Z‘%(xu_‘%i-'—‘jy)(?/u"??z —Y j)
- 77;‘;(-@14‘—75" )2 4{7‘; Gide Zz;(x”_j’ —Z.;)* n2E }

Q.(¢ = 1) = {E 2(yii—§i—Y.i+y.) —

J
P %%(xu—@.—ﬁj)z

respectively. Therefore the critical region at level 0.05 for Hy; a = 0 is
approximated by
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Cos Qel08 =1) [ Quls = 1)

E—1 —1)(71—"1) — >Fk—1:(k—1)(n—1)—1(0-05)

5. Computational Procedures

From sections 3 and 4, it follows that in actually applying the results of
this paper we may in fact proceed as follows:

(1) Compute Qs and Q.(c} = 0). - _1 k_?e ZB——I)O)——l

> Fu-1, h-1(n-1-1(0.05), we reject the hypothesis Hj; ¢ = 0 and proceed along

(2) or (3) given below; i 77 / k—Qi()(zB — (;) 7 KFa-1 Gh-n--1(0.05), we

accept Hy; aﬂ = ( and proceed along the procedure given in case 1 of sectlon 4.

(2) Compute Q. = Z; (yij —7¢ —¥y.5+¥.)% Since nc_l_ﬂ and

1
~(%-:T)TSLZ%1T:1— are unbiased for ks} + ¢ and o® respectively and Q.. > Q.

_ o8 _Qp Q.: ; kob
for all 0 = 62 =T = 1)(n —1) =1 Vould indicate that (ks + o)

When such is the case, we should proceed along the procedure given in case

~1.

2 of section 4.

2
(3) If 0 = %‘} is known, we should proceed along the procedure given

2
in case a of section 3. If 0 = Zf is unknown, if neither (1) nor (2) applies,

2
and if » is very big, we should first obtain estimate § of 6 = f;% and then
substitute § for 0 in Q«(0) and proceed as suggested in case b of section 3.
2
The estimated values of ¢ and ¢ (and hence § = f-:;‘}) can be obtained from

the following two equations using some numerical method or IBM program.

(a) g% = ‘(k _1)(7}_1) _1{%%‘ (yij _gz _’.(_/-J' +/.[—/.-)2
IS S = B =)~ e kS x.jy.j]}
T s
zz (1 — B2 b S

and
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